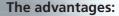
passion for precision

High-performance milling cutter NVDS For up to 15 times faster penetration

New cutting data calculator **ToolExpert** HelixRamp

The 7 dimensions of NVDS technology opens a ground-breaking range of possibilities!

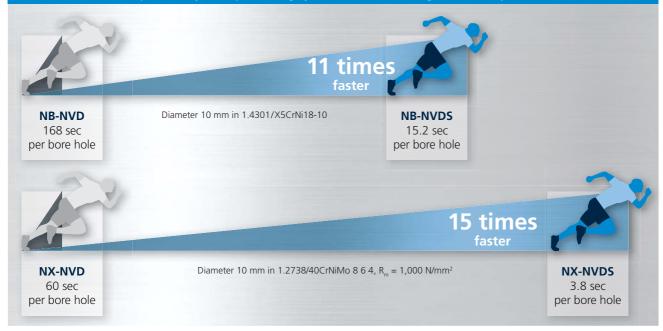
With the new high-performance penetration edge, the **NX-NVDS** and **NB-NVDS** achieve a level of performance that facilitates peak productivity and process reliability in **7 dimensions**!


This FRAISA innovation gives **NVDS** tools a ground-breaking performance range!

The patented double-groove geometry and the variable twist facilitate high radial and axial infeed positions, which are particularly suitable for **HPC and HDC milling**.

Thanks to exceptional chip clearing, the tools achieve the highest degree of **process reliability** and **reproducibility**. This allows the **automation capacity** to be increased further, even where productivity is already high.

The development of the new penetration edge allows FRAISA to introduce the term **high-performance penetration**. The new high-performance penetration edge **cuts easily and clears the chips without disrupting the process**. With NVDS tools, helical penetration angles of up to 20° can thus be implemented. In components with inner contours, NVDS milling cutters can penetrate to the working depth up to 15 times (!) faster than previous designs. This opens up **new areas of application**, which can also allow drilling operations to be eliminated.


The very broad range of applications for **NVDS** tools should be emphasized. **NX-NVDS** is excellently suited for annealed and hardened tool steel, as well as for cast iron and titanium. **NB-NVDS** is suitable for soft steel, annealed and stainless steel, and for titanium- and nickel-based alloys. **Between them, NVDS high-performance tools can** machine over 2,000 types of steel, non-ferrous, heavy and light metals!

- Extreme productivity increase during penetration using helical interpolation or ramping, thanks to new high-performance penetration edge
- Highest productivity during HPC milling due to double-groove geometry and variable twist
- Excellent suitability for highly dynamic HDC milling
- Process reliability, automation and reproducibility thanks to controlled chip clearing and high wear resistance
- Extremely high universality in various materials and machining strategies
- Verified FRAISA cutting and application data in
 ToolExpert
 - ToolExpert HDC
 - ToolExpert HelixRamp
- New options in **drilling and** circular milling
- Opening up further applications using short shank tools

See for yourself the impressive performance of NVDS milling cutters in direct video comparison The extreme increase in productivity when penetrating by means of helical drilling in direct comparison

The **ReTool**[®] tool reconditioning process completes the optimal service life of the **NVDS tools**. Overall economic efficiency is thus further improved, and valuable resources are saved.

Revolutionary ideas always need to be adequately reliable! FRAISA has therefore developed **ToolExpert He-lixRamp** to provide verified cutting data for penetration or ramping. The present **FRAISA cutting data recommenda-tions were continuously** tested and approved throughout the application development process.

Test the new milling cutters from FRAISA, see for yourself the performance improvement potential with the **7 dimensions of the NVDS** technology, and improve productivity in your company.

The 7 dimensions of the NVDS technology:

- high-performance HPC and HDC milling
- high-performance penetration
- process reliability and reproducibility
- automation
- universality
- ToolExpert cutting data
- ReTool[®] tool reconditioning

Innovative top-end technology

The tool technologies of NVDS tools

Small corner radius

- The cylindrical tool has a small corner radius to strengthen the cutting edge
- Higher thermal and mechanical load, and therefore improved performance

Milling tool with scaled slot

- Enlarging the chip space
- Optimized chip removal
- High axial and radial infeed rates possible

Milling tool with a variable helix angle

- Minimization of oscillations and vibrations
- Increase in material removal rates and tool life

Smooth transitions

- The shaft-neck-cutting edge transitions are made with smooth gradients and radii
- Improved tool rigidity and therefore less radial deflection
- Higher mechanical load and therefore improved performance

Milling tool with a special protective chamfer

- Reinforcement of the main cutting edge against chipping
- High tooth feed rates for smooth-edged tools

High-performance penetration edge

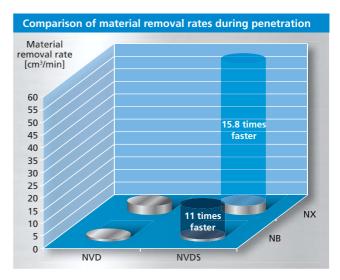
- Easy-cutting high-performance penetration edge for high penetration angles
- Higher performance, tool life and process reliability for penetration
- High functionality with cutting data from ToolExpert HelixRamp

The new high-performance penetration edge from FRAISA

VAS .	 Small cutting corner radius and "wipers" with negative tooth point geometry Significant cutting corner reinforcement and improved chip removal Higher performance, tool life and process reliability 	
	 New cutting edge geometry with sharpened, open cutting edge Reduced cutting force loads during the penetration process High cutting edge stability, and hence higher wear resistance and performance Reliable penetration up to helical interpolation angles of 20°, and without special peripheral equipment 	
1	 Flute connection between cutting edge and shaft area Controlled removal of chips from the cutting edge area – hence ensuring process reliability and reproducibility Reduced conversion energy thanks to radii on all sides in the spiral flute – hence lower thermal and mechanical loads Tof designs of high-performance penetration edge by mean 	

NX-NVDS tools (rake angle -10°) are perfectly suited for annealed and hardened tool steel, cast iron and titanium.

registration.


NB-NVDS (rake angle 5°) are particularly suitable for soft steel, annealed and stainless steel, and for titanium- and nickel-based alloys.

Very fast penetration means high savings potential

Extreme productivity increase through reduction in penetration time

The extreme performance of the new high-performance penetration edge results from a series of technological innovations. In comparison to the NVD concept, productivity in the penetration process is increased up to fifteen times.

NX tools	NX tools in annealed steel for plastic-moulding tools, 1.2738/40CrMnNiMo 8 6 4, R _m = 1,000 N/mm ²													
	d1	z	ар	vc	fz	n	vfZ	φΖ	DA	Time per bore hole	Material removal rate Q	Productivity increase		
	[mm]		[mm]	[m/min]	[mm]	[min ⁻¹]	[mm/min]	[°]	[mm]	[s]	[cm³/min]			
NX-NVDS	10	4	20	140	0.065	4455	1160	20	15	3.8	55.80	15.8 times faster		
NX-NVD	10	4	20	140	0.065	4455	1160	1	15	60.0	3.55			

NB tools	NB tools in stainless austenitic steel, 1.4301/X5CrNi18-10													
	d1	z	ар	vc	fz	n	vfZ	φΖ	DA	Time per bore hole	Material removal rate Q	Productivity increase		
	[mm]		[mm]	[m/min]	[mm]	[min ⁻¹]	[mm/min]	[°]	[mm]	[s]	[cm ³ /min]			
NB-NVDS	10	4	20	90	0.045	2865	515	10	15	15.2	13.95	11 times faster		
NB-NVD	10	4	20	90	0.036	2865	415	1	15	168.0	1.25			

Universality at the highest performance level

NVDS tools are particularly powerful, as they have a high level of universality in terms of their application and material spectrum – uncompromising at the highest performance. For reliable use, take advantage of FRAISA cutting data recommendations in the catalog or of the cutting data software:

- **ToolExpert** for all basic applications with detailed material selection
- **ToolExpert HDC** for the highly dynamic HDC milling strategy with consistent cutting edge utilization
- **ToolExpert HelixRamp** for high-performance penetration and ramp milling

Lateral and groove machining using HPC and HDC strategies

The familiar **NX-NVD** and **NB-NVD** tools provide high performance in lateral milling (gear hobbing). The development objective of the high-performance penetration edge was to retain these positive milling characteristics of the tool at all costs. This criteria was fulfilled, and could even be exceeded in some materials. The reason for this is a new cutting edge stabilization thanks to a small corner radius. This additionally strengthens the exposed cutting edge against thermal and mechanical loads.

Milling	Ød	z	ар	ae	Vc	n	fz	Vf	Q
	[mm]		[mm]	[mm]	[m/min]	[min ⁻¹]	[mm]	[mm/min]	[cm³/min]
	6	4	12	1.5	239	12679	0.081	4108	74.0
Standard Vario tool					1				
NB-NVD					1				
NB-NVDS									

Reliable penetration parameters Information for users

Tool life, process reliability, automation

High productivity is important, but so are process reliability and tool life. The development process therefore placed particular value on reliable tools. The recommended cutting data were calculated and checked in many tests. The number of penetration processes specified below is determined on the basis of the tool diameter, the material, and the material removal rate during lateral milling. These validate the broad application spectrum of the NVDS milling tools. The cutting data displayed in the catalog and in the online tool ToolExpert HelixRamp can be utilized over a long tool life. And then the tools can always be resharpened, and can be reused..

NX-NVDS in annealed steel for plastic-moulding tools in 1.2738, R_m= 1000 N/mm² HELIX **d1** [mm] z vc [m/min] **fz** [mm] **n** [min⁻¹] vfZ [mm/min] φ**Ζ** [°] NX-NVDS 20 12 4 140 0.075 3715 1115 Wear pattern after 80 helical penetration processes

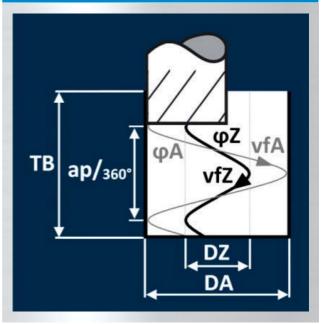
NB-NVDS in sta	ainless austenitic	steel in 1.430	01, R _m = 650 N/mm	2			
RAMPING	d1 [mm]	z	vc [m/min]	fz [mm]	n [min ⁻¹]	vfZ [mm/min]	φ R [°]
NB-NVDS	8	4	70	0.025	2785	280	16
415	a _{₽↓}					Wear pattern aft 50 ramping pene processes	

Program the penetration angle ϕZ or ϕA correctly!

Penetration using **helical interpolation** is today used as standard to get into pockets, deeper levels or bores. The reason for this is the improved chip removal and the lower process temperatures during helical interpolation. This allows higher penetration depths to be achieved during helical machining. Depending on the machine control system or CAM system used, different input parameters may be required for the same procedure. Typically these are:

- The external diameter of the helical drilling DA
- The central penetration angle φZ
- The speed n and the feed rate vfZ at the center
- The penetration depth TB

FRAISA recommends entering the DA as 1.9xd1 if possible. e.g.: milling cutter diameter d1 = 10 mm, DA = 19 mm


ATTENTION: For cycle programming, it may be necessary to enter other penetration parameters, depending on the machine control system. On some machine control systems (e.g. Heidenhain), it is not the central penetration angle ϕZ that is needed, but the penetration angle at the outer track ϕA !

This is entered at the machine (tool table) under "Angle". The penetration angles at the center ϕZ and at the outer track ϕA vary significantly, depending on the DA for the milling cutter diameter. The outer angle ϕA is always smaller than the central angle ϕZ .

With other control systems again, the infeed per helical rotation (ap/360°), the radius of the tool tip path (e.g. Siemens) or the radius of the bore (e.g. Fanuc) is required.

In some cases the ramps have to be selected on the basis of the component, e.g. an elongated hole slot. The parameters for programming a **ramp** are identical on all control systems.

Helix Penetration Process

Use ToolExpert HelixRamp

For the cycle programming on the machine, note which entries are relevant for the corresponding control system. For the cutting data, you can find the basic data with φ Z and vfZ. You can then use the conversion table below to find φ A. It is even faster and simpler with the cutting data software **ToolExpert HelixRamp**, which allows all penetration parameters to be calculated and compared with just a few clicks!

Conversion table ϕ Z to ϕ A with corresponding bore diameter											
Penetration angle ϕ Z [°]	20°	18°	17.5°	15°	13°	12°	10°	8°			
Bore diameter DA		angle φ A [°]									
DA = d1 x 1.3 [mm]	4.8°	4.3°	4.2°	3.5°	3.0°	2.8°	2.3°	1.9°			
DA = d1 x 1.5 [mm]	6.9°	6.2°	6.0°	5.1°	4.4°	4.1°	3.4°	2.7°			
DA = d1 x 1.7 [mm]	8.5°	7.6°	7.4°	6.3°	5.4°	5.0°	4.2°	3.3°			
DA = d1 x 1.9 [mm]	9.8°	8.7°	8.5°	7.2°	6.2°	5.7°	4.8°	3.8°			

FRAISA recommendation

Where is it possible to

Where is it possible to ask questions concerning the product? If you have any question, please send an email to **mail.ch@fraisa.com**. You may also directly contact our local customer consultant.

The FRAISA application engineers will be happy to advise you.

For further information, please refer to **fraisa.com**.

Fast, simple, reliable: ToolExpert HelixRamp

The cutting data software ToolExpert HelixRamp was developed for the new high-performance tools. The software can conveniently be started using the FRAISA website **www.fraisa.com/en/toolexpert-helixramp** With just a few clicks, you can define the material, tool and penetration strategy, and receive the parameters to be programmed for your machine control or CAM system.

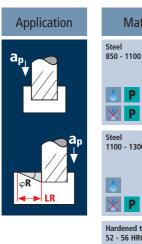
Expert Mode

ToolExpert HelixRamp Expert mode Helical

Change the parameters in the second table on your own responsibility and compare them with the recommended application values.

Application recommendation				Manual input
Diameter of the cutting edge	d ₁	[mm]	4	4
Number of cutting edges	Z	-	4	4
External diameter of the drilled hole	DA	[mm] •	7.60	7.60
Diameter of the centering path	DZ	[mm] ▼	3.60	3.60
Hole depth	TB	[mm]	6.00	6.00
Cutting Speed	VC	[m/min]	140	140
Feed rate per tooth	fz	[mm]	0.03	0.03
Spindle speed	n	[min ⁻¹]	11140	11140
Axial safety distance	TS	[mm]	2	2
Feed rate of the centering path	vfZ	[mm/min]	1340	1340
Penetration angle of the centering path	φΖ	[°]	20	20
Feed rate of the outer path	vfA	[mm/min]	2830	2830
Penetration angle of the outer path	φA	[°]	9.8	9.8
Depth per circular movement	ap/360°	[mm]	4.116	4.116
Penetration time per drilled hole (incl. TS)		[sec]	1.292	1.292
Material removal rate	Q	[cm ³ /min]	12.640	12.640
Catalog cutti	ng data	Download		

passion for preci fraisa


Expert Mode then allows you to calculate cutting data or your new productivity yourself, and finally to save all information in a PDF or printout.

New cutting data calculator **ToolExpert** HelixRamp

[11]

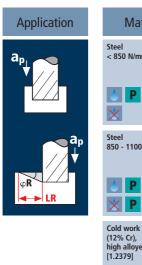
Application
φZ

Material	d1 [mm]	z	Vc [m/min]	fz [mm]	ap [mm]	a _e [mm]	n [min ^{:1}]	v_f / v_fZ [mm/min]	Q [cm³/min]	φ Ζ [°]	φ Α [°]
Steel	4	4	140	0.030	6.0	1.6	11140	1335	13.0	20 °	
850 - 1100 N/mm ²	5	4	140	0.035	7.5	2.0	8915	1250	19.0	20°	
050 1100 101111	6	4	140	0.040	9.0	2.4	7425	1190	25.5	20°	Ē
	8	4	140	0.050	12.0	3.2	5570	1115	43.0	20 °	ert .co
	10	4	140	0.065	15.0	4.0	4455	1160	69.5	20 °	isa isa
6 P	12	4	140	0.075	18.0	4.8	3715	1115	96.5	20°	am fra
	16	4	140	0.085	24.0	6.4	2785	945	145.0	20°	5 X X
×P	20	4	140	0.100	30.0	8.0	2230	890	213.5	20°	see ToolExpert HelixRamp (www.fraisa.com)
Steel	4	4	115	0.030	6.0	1.6	9150	1100	10.5	17.5°	
1100 - 1300 N/mm ²	5	4	115	0.035	7.5	2.0	7320	1025	15.5	17.5°	
	6	4	115	0.040	9.0	2.4	6100	975	21.0	17.5°	Ê
	8	4	115	0.050	12.0	3.2	4575	915	35.0	17.5°	S ST
	10	4	115	0.065	15.0	4.0	3660	950	57.0	17.5°	y y di
A P	12	4	115	0.075	18.0	4.8	3050	915	79.0	17.5°	am
	16	4	115	0.085	24.0	6.4	2290	780	120.0	17.5°	NX R
×P	20	4	115	0.100	30.0	8.0	1830	730	175.0	17.5°	see ToolExpert HelixRamp (www.fraisa.com)
Hardened tool steel	4	4	50	0.015	6.0	1.6	3980	240	2.5	15°	
52 - 56 HRC	5	4	50	0.020	7.5	2.0	3185	255	4.0	15°	
52 50 1110	6	4	50	0.025	9.0	2.4	2655	265	5.5	15°	Ê
	8	4	50	0.030	12.0	3.2	1990	240	9.0	15°	S ST
	10	4	50	0.035	15.0	4.0	1590	225	13.5	15°	ToolExpert xRamp wv.fraisa.co
	12	4	50	0.045	18.0	4.8	1325	240	20.5	15°	am
	16	4	50	0.055	24.0	6.4	995	220	34.0	15°	N X 10
×P	20	4	50	0.070	30.0	8.0	795	225	54.0	15°	see ToolExpert HelixRamp (www.fraisa.com)
Titanium alloys	4	4	60	0.020	6.0	1.6	4775	380	3.5	12°	_
>300 HB	5	4	60	0.025	7.5	2.0	3820	380	5.5	12°	
[Ti6Al4V]	6	4	60	0.030	9.0	2.4	3185	380	8.0	12°	Ê
[10A14V]	8	4	60	0.040	12.0	3.2	2385	380	14.5	12°	t 10
	10	4	60	0.045	15.0	4.0	1910	345	20.5	12°	p sa.
A P	12	4	60	0.055	18.0	4.8	1590	350	30.0	12°	see ToolExpert HelixRamp (www.fraisa.com)
	16	4	60	0.065	24.0	6.4	1195	310	47.5	12°	XR:
	20	4	60	0.080	30.0	8.0	955	305	73.0	12°	Heli: (ww
											SIS

Material	d1 [mm]	z	Vc [m/min]	fz [mm]	ap ímml	ae [mm]	n [min ⁻¹]	vf / vfR [mm/min]	Q [cm³/min]	φ R [°]	LR [mm]
	fund		functional	funni	fund	fumul	fumi 1	fummunul	[cm/mm]		funud
Steel	4	4	110	0.025	5.0	4	8755	875	17.5	32°	8.0
850 - 1100 N/mm ²	5	4	110	0.025	6.3	5	7005	700	22.0	32°	10.4
	6	4	110	0.030	7.5	6	5835	700	31.5	32°	12.0
	8	4	110	0.040	10.0	8	4375	700	56.0	32°	16.0
	10	4	110	0.050	12.5	10	3500	700	87.5	32°	20.0
A P	12	4	110	0.055	15.0	12	2920	640	115.0	32°	24.0
	16	4	110	0.065	20.0	16	2190	570	182.5	32°	32.0
×P	20	4	110	0.075	25.0	20	1750	525	262.5	32°	40.0
Steel	4	4	90	0.025	5.0	4	7160	715	14.5	28°	9.4
Steel 1100 - 1300 N/mm ²	5	4	90	0.025	6.3	5	5730	575	18.0	28°	12.2
1100 - 1300 N/mm ²	6	4	90	0.020	7.5	6	4775	575	26.0	28°	14.1
	8	4	90	0.040	10.0	8	3580	575	46.0	28°	18.8
	10	4	90	0.050	12.5	10	2865	575	72.0	28°	23.5
	12	4	90	0.055	15.0	12	2385	525	94.5	28°	28.2
b	16	4	90	0.065	20.0	16	1790	465	149.0	28°	37.6
N/Z D	20	4	90	0.075	25.0	20	1430	430	215.0	28°	47.0
XP											
Hardened tool steel	4	4	40	0.010	5.0	4	3185	125	2.5	24°	11.2
52 - 56 HRC	5	4	40	0.015	6.3	5	2545	155	5.0	24°	14.6
	6	4	40	0.020	7.5	6	2120	170	7.5	24°	16.8
	8	4	40	0.025	10.0	8	1590	160	13.0	24°	22.5
	10	4	40	0.025	12.5	10	1275	130	16.5	24°	28.1
	12	4	40	0.035	15.0	12	1060	150	27.0	24°	33.7
	16	4	40	0.040	20.0	16	795	125	40.0	24°	44.9
XP	20	4	40	0.055	25.0	20	635	140	70.0	24°	56.2
Titanium alloys	4	4	50	0.015	5.0	4	3980	240	5.0	19°	14.5
>300 HB	5	4	50	0.020	6.3	5	3185	255	8.0	19°	18.9
[Ti6Al4V]	6	4	50	0.025	7.5	6	2655	265	12.0	19°	21.8
[10/0444]	8	4	50	0.030	10.0	8	1990	240	19.0	19°	29.0
	10	4	50	0.035	12.5	10	1590	225	28.0	19°	36.3
P	12	4	50	0.040	15.0	12	1325	210	38.0	19°	43.6
	16	4	50	0.050	20.0	16	995	200	64.0	19°	58.1
	20	4	50	0.060	25.0	20	795	190	95.0	19°	72.6

Cylindrical end mills NX-NVDS

Smooth-edged, normal version with short neck High-performance penetration edge

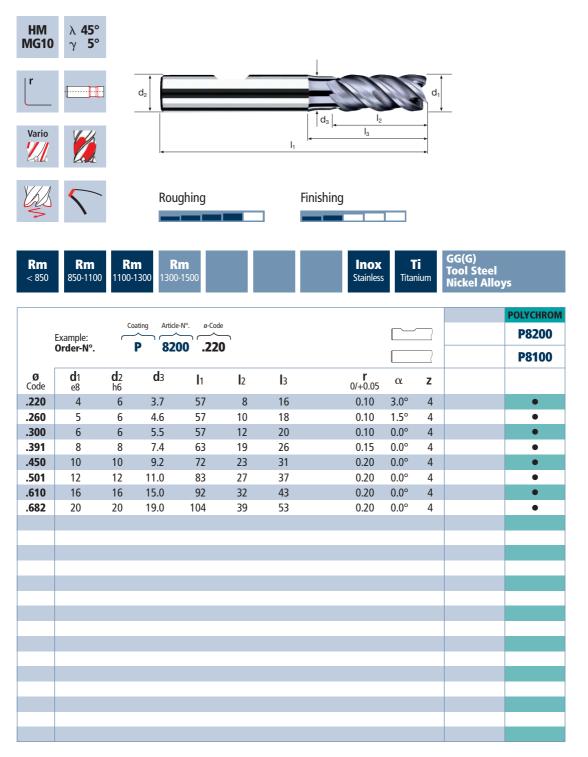

Rm 850-1100	Rm 1100-1300	Rm 1300-1500	HRC 48-56	HRC 56-60		Ti Titanium	GG(G) Tool Steel

										POLYCHROM
	Example: Order-N°.		Dating Article	\frown				\square	\square	P8600
	Order-N°.		P 86	00 .220						 P8500
Ø Code	d 1 e8	d 2 h6	d 3	I 1	2	I 3	r 0/+0.05	α	z	
.220	4	6	3.7	57	8	16	0.10	3.0°	4	•
.260	5	6	4.6	57	10	18	0.10	1.5°	4	•
.300	6	6	5.5	57	12	20	0.10	0.0°	4	•
.391	8	8	7.4	63	19	26	0.15	0.0°	4	•
.450	10	10	9.2	72	23	31	0.20	0.0°	4	•
.501	12	12	11.0	83	27	37	0.20	0.0°	4	•
.610	16	16	15.0	92	32	43	0.20	0.0°	4	•
.682	20	20	19.0	104	39	53	0.20	0.0°	4	•

FRAISA marks all exceptional innovations with the signature **KS**. This is in memory of the legendary Head of Production and Development, Mr Konrad Schmid, who defined the FRAISA brand from 1969 until 2000.

Application							
a _p , ▼ ■ ■ ■							
φZ							

Material	d1 [mm]	z	Vc [m/min]	f z [mm]	a p [mm]	a _e [mm]	n [min⁻¹]	v_f / v_fZ [mm/min]	Q [cm³/min]	φ Ζ [°]	φ Α [°]
Steel	4	4	180	0.035	6.0	1.6	14325	2005	19.0	20°	
< 850 N/mm ²	5	4	180	0.040	7.5	2.0	11460	1835	27.5	20°	
	6	4	180	0.050	9.0	2.4	9550	1910	41.5	20°	see ToolExpert HelixRamp (www.fraisa.com)
	8	4	180	0.060	12.0	3.2	7160	1720	66.0	20°	co ert
	10	4	180	0.075	15.0	4.0	5730	1720	103.0	20 °	dx disa
A P	12	4	180	0.085	18.0	4.8	4775	1625	140.5	20°	ToolExpert ixRamp ww.fraisa.co
	16	4	180	0.095	24.0	6.4	3580	1360	209.0	20°	N R L
× P	20	4	180	0.110	30.0	8.0	2865	1260	302.5	20°	v lee
											01±0
Steel	4	4	140	0.030	6.0	1.6	11140	1335	13.0	18°	
850 - 1100 N/mm ²	5	4	140	0.035	7.5	2.0	8915	1250	19.0	18°	
	6	4	140	0.040	9.0	2.4	7425	1190	25.5	18°	Ê
	8	4	140	0.050	12.0	3.2	5570	1115	43.0	18°	ert .co
	10	4	140	0.065	15.0	4.0	4455	1160	69.5	18°	y y p
A P	12	4	140	0.075	18.0	4.8	3715	1115	96.5	18°	olE am fra
	16	4	140	0.085	24.0	6.4	2785	945	145.0	18°	N X R
×P	20	4	140	0.100	30.0	8.0	2230	890	213.5	18°	see ToolExpert HelixRamp (www.fraisa.com)
Cold work tool steel	4	4	70	0.030	6.0	1.6	5570	670	6.5	12°	
(12% Cr),	5	4	70	0.035	7.5	2.0	4455	625	9.5	12°	
high alloyed	6	4	70	0.040	9.0	2.4	3715	595	13.0	12°	Ê
[1.2379]	8	4	70	0.050	12.0	3.2	2785	555	21.5	12°	ti O
[10	4	70	0.060	15.0	4.0	2230	535	32.0	12°	ToolExpert ixRamp wv.fraisa.co
A P	12	4	70	0.075	18.0	4.8	1855	555	48.0	12°	olE am fra
	16	4	70	0.085	24.0	6.4	1395	475	73.0	12°	see ToolExpert HelixRamp (www.fraisa.com)
×P	20	4	70	0.095	30.0	8.0	1115	425	102.0	12°	w Tel
Stainless steel	4	4	90	0.020	6.0	1.6	7160	575	5.5	12°	
[Cr-Ni/1.4301]	5	4	90	0.025	7.5	2.0	5730	575	8.5	12°	
	6	4	90	0.030	9.0	2.4	4775	575	12.5	12°	Ê
	8	4	90	0.035	12.0	3.2	3580	500	19.0	12°	ert .co
	10	4	90	0.045	15.0	4.0	2865	515	31.0	12°	p isa.
A P	12	4	90	0.055	18.0	4.8	2385	525	45.5	12°	ToolExpert xRamp w.fraisa.co
	16	4	90	0.065	24.0	6.4	1790	465	71.5	12°	XR.
	20	4	90	0.080	30.0	8.0	1430	460	110.5	12°	see ToolExpert HelixRamp (www.fraisa.com)
											S H S



Material	d1 [mm] z	Vc [m/min]	f z [mm]	a p [mm]	a _e [mm]	n [min ⁻¹]	v_f / v_fR [mm/min]	Q [cm³/min]	φ R [°]	LR [mm]
Steel < 850 N/mm²	4	4	145	0.025	5.0	4	11540	1155	23.0	32°	8.0
	5	4	145	0.030	6.3	5	9230	1110	34.5	32°	10.4
	6	4	145	0.040	7.5	6	7695	1230	55.5	32°	12.0
	8	4	145	0.045	10.0	8	5770	1040	83.0	32°	16.0
<mark>∣</mark> P × P	10	4	145	0.055	12.5	10	4615	1015	127.0	32°	20.0
	12	4	145	0.065	15.0	12	3845	1000	180.0	32°	24.0
	16	4	145	0.070	20.0	16	2885	810	259.0	32°	32.0
	20	4	145	0.085	25.0	20	2310	785	392.5	32°	40.0
Steel	4	4	110	0.020	5.0	4	8755	700	14.0	29 °	9.0
850 - 1100 N/mm ²	5	4	110	0.025	6.3	5	7005	700	22.0	29°	11.7
000 1100 101111	6	4	110	0.030	7.5	6	5835	700	31.5	29°	13.5
	8	4	110	0.040	10.0	8	4375	700	56.0	29°	18.0
6 P	10	4	110	0.050	12.5	10	3500	700	87.5	29°	22.6
	12	4	110	0.055	15.0	12	2920	640	115.0	29°	27.1
	16	4	110	0.065	20.0	16	2190	570	182.5	29 °	36.1
×P	20	4	110	0.075	25.0	20	1750	525	262.5	29°	45.1
Cold work tool steel	4	4	55	0.025	5.0	4	4375	440	9.0	19°	14.5
(12% Cr),	5	4	55	0.025	6.3	5	3500	350	11.0	19°	18.9
high alloyed	6	4	55	0.030	7.5	6	2920	350	16.0	19°	21.8
[1.2379]	8	4	55	0.040	10.0	8	2190	350	28.0	19°	29.0
[2070]	10	4	55	0.045	12.5	10	1750	315	39.5	19°	36.3
b	12	4	55	0.055	15.0	12	1460	320	57.5	19°	43.6
	16	4	55	0.065	20.0	16	1095	285	91.0	19°	58.1
×P	20	4	55	0.070	25.0	20	875	245	122.5	19°	72.6
Stainless steel	4	4	70	0.015	5.0	4	5570	335	6.5	14°	20.1
[Cr-Ni/1.4301]	5	4	70	0.020	6.3	5	4455	355	11.0	14°	26.1
	6	4	70	0.025	7.5	6	3715	370	16.5	14°	30.1
	8	4	70	0.025	10.0	8	2785	280	22.5	14°	40.1
	10	4	70	0.035	12.5	10	2230	310	39.0	14°	50.1
6 P	12	4	70	0.040	15.0	12	1855	295	53.0	14°	60.2
	16	4	70	0.050	20.0	16	1395	280	89.5	14°	80.2
	20	4	70	0.060	25.0	20	1115	270	135.0	14°	100.3

Cylindrical end mills NB-NVDS

Smooth-edged, normal version with short neck High-performance penetration edge

FRAISA marks all exceptional innovations with the signature **KS**. This is in memory of the legendary Head of Production and Development, Mr Konrad Schmid, who defined the FRAISA brand from 1969 until 2000.

Here, you will be provided with further information on the FRAISA Group.

The fastest way to our E-Shop can be found here.

Climate Partner ^o climate neutral Print | ID 53402-1508-1003

The CO2 emissions for this product have been compensated by CO2 emission certificate.

FRAISA SA

Gurzelenstr. 7 | CH-4512 Bellach | Tel.: +41 (0) 32 617 42 42 | Fax: +41 (0) 32 617 42 41 | mail.ch@fraisa.com | **fraisa.com** |

You can also find us at: facebook.com/fraisagroup youtube.com/fraisagroup passion for precision

